home *** CD-ROM | disk | FTP | other *** search
- ;;;; "Transcen.scm", Complex trancendental functions for SCM.
- ;;; Copyright (C) 1992, 1993 Jerry D. Hedden.
- ;;; See the file `COPYING' for terms applying to this program.
-
- (define compile-allnumbers #t) ;for HOBBIT compiler
-
- (define (exp z)
- (if (real? z) ($exp z)
- (make-polar ($exp (real-part z)) (imag-part z))))
-
- (define (log z)
- (if (and (real? z) (>= z 0))
- ($log z)
- (make-rectangular ($log (magnitude z)) (angle z))))
-
- (define (sqrt z)
- (if (real? z)
- (if (negative? z) (make-rectangular 0 ($sqrt (- z)))
- ($sqrt z))
- (make-polar ($sqrt (magnitude z)) (/ (angle z) 2))))
-
- (define expt
- (let ((integer-expt integer-expt))
- (lambda (z1 z2)
- (cond ((exact? z2)
- (integer-expt z1 z2))
- ((and (real? z2) (real? z1) (>= z1 0))
- ($expt z1 z2))
- (else
- (exp (* z2 (log z1))))))))
-
- (define (sinh z)
- (if (real? z) ($sinh z)
- (let ((x (real-part z)) (y (imag-part z)))
- (make-rectangular (* ($sinh x) ($cos y))
- (* ($cosh x) ($sin y))))))
- (define (cosh z)
- (if (real? z) ($cosh z)
- (let ((x (real-part z)) (y (imag-part z)))
- (make-rectangular (* ($cosh x) ($cos y))
- (* ($sinh x) ($sin y))))))
- (define (tanh z)
- (if (real? z) ($tanh z)
- (let* ((x (* 2 (real-part z)))
- (y (* 2 (imag-part z)))
- (w (+ ($cosh x) ($cos y))))
- (make-rectangular (/ ($sinh x) w) (/ ($sin y) w)))))
-
- (define (asinh z)
- (if (real? z) ($asinh z)
- (log (+ z (sqrt (+ (* z z) 1))))))
-
- (define (acosh z)
- (if (and (real? z) (>= z 1))
- ($acosh z)
- (log (+ z (sqrt (- (* z z) 1))))))
-
- (define (atanh z)
- (if (and (real? z) (> z -1) (< z 1))
- ($atanh z)
- (/ (log (/ (+ 1 z) (- 1 z))) 2)))
-
- (define (sin z)
- (if (real? z) ($sin z)
- (let ((x (real-part z)) (y (imag-part z)))
- (make-rectangular (* ($sin x) ($cosh y))
- (* ($cos x) ($sinh y))))))
- (define (cos z)
- (if (real? z) ($cos z)
- (let ((x (real-part z)) (y (imag-part z)))
- (make-rectangular (* ($cos x) ($cosh y))
- (- (* ($sin x) ($sinh y)))))))
- (define (tan z)
- (if (real? z) ($tan z)
- (let* ((x (* 2 (real-part z)))
- (y (* 2 (imag-part z)))
- (w (+ ($cos x) ($cosh y))))
- (make-rectangular (/ ($sin x) w) (/ ($sinh y) w)))))
-
- (define (asin z)
- (if (and (real? z) (>= z -1) (<= z 1))
- ($asin z)
- (* -i (asinh (* +i z)))))
-
- (define (acos z)
- (if (and (real? z) (>= z -1) (<= z 1))
- ($acos z)
- (+ (/ (angle -1) 2) (* +i (asinh (* +i z))))))
-
- (define (atan z . y)
- (if (null? y)
- (if (real? z) ($atan z)
- (/ (log (/ (- +i z) (+ +i z))) +2i))
- ($atan2 z (car y))))
-